

How **Science** Simplifies and Supercharges Primary Level **Mathematics** Learning and Teaching

Mathematics

Science Symmetry

Mathematics

Science Symmetry Empirical

Mathematics

Symmetry Mathematics ARITHMOS Applied & practical for workers & slaves

Symmetry ARITHMOS Applied & practical for workers & slaves

Asymmetric Symmetry Empirical ARITHMOS Applied & practical for workers & slaves

Symmetry ARITHMOS Applied & practical for workers & slaves Abstract

Science

Asymmetric

Symmetry ARITHMOS Applied & practical for workers & slaves Abstract Abstract for philosophers

Asymmetric

Science Symmetry Empirical ARITHMOS

Asymmetric Mathematics ABStract ARITHMOI

Science Symmetry 20MHTIRA Empirical

Asymmetric Mathematics Monthematics Abstract IOMHTINA


@jcrabtree

GOT 10 SEC?

U FUN POLL

YOUR OPINION IS NEEDED!

@jcrabtree

GOT 10 SEC?

U FUN POLL

YOUR OPINION IS NEEDED!

Click to Vote!

What Should School Kids be Taught Today?

@jcrabtree

GOT 10 SEC?

U FUN POLL

YOUR OPINION IS NEEDED!

Click to Vote!

What Should School

Kids be Taught Today?

- Math Laws CONTRARY to Simple Science Laws

@jcrabtree

GOT 10 SEC?

U FUN POLL

YOUR OPINION IS NEEDED!

Click to Vote!

What Should School

Kids be Taught Today?

- Math Laws CONTRARY to Simple Science Laws or

- Math Laws CONSISTENT with Simple Science Laws

WHY FIX **ELEMENTARY ARITHMETIC?**

My Research into its Evolution Reveals it to be

INCONSISTENT

INCOMPLETE

INFERIOR

HOW DO WE FIX ELEMENTARY ARITHMETIC?

STOP TEACHING ARITHMOI START TEACHING ARITHMOS

INCONSISTENT

INCOMPLETE

INFERIOR

The product of two smaller factors can be greater than the product of two larger factors

The product of two smaller factors
can be greater than the
product of two larger factors

-3 × -4 = +12 yet the product of two
'larger' factors like +1 × +2 is LESS!

Fractions are equal if they BOTH have the smaller number as the numerator and the larger number as the denominator, or vice-versa.

Yet, $\frac{1}{7}$ 1/ $\frac{1}{7}$ 2 = $\frac{1}{7}$ 1/ $\frac{1}{7}$ 2 so $\frac{1}{7}$ 1 IS LESS than $\frac{1}{7}$ 2 for the equality to

Fractions are equal if they BOTH have the smaller number as the numerator and the larger number as the denominator, or vice-versa.

$$+2/+4 = +3/+6$$
 \checkmark $+2/+4 = +6/+3$ X

Yet, $^{\dagger}1/^{\dagger}2 = ^{-}1/^{-}2$ so $^{-}1$ IS LESS than $^{-}2$ for the equality to

Fractions are equal if they BOTH have the smaller number as the numerator and the larger number as the denominator, or vice-versa.

$$+2/+4 = +3/+6$$
 $+2/+4 = +6/+3$ X

$$+4/+2 = +6/+3$$
 $+4/+2 = +3/+6$

$$+1/+2 = -1/-2$$

Therefore... -1 IS LESS THAN -2

The English definition of multiplication since February 1570 defines ab as

 $a \times b = a$ added to itself b times

"to multiply a by positive integral b is to add a to itself b times"

www.collinsdictionary.com/dictionary/english/multiplication

The English definition of multiplication since February 1570 defines 1×1 as

 $1 \times 1 = 1$ added to itself 1 times

Does one multiplied by one equal two?

Definitions of a³

The result of multiplying a number, quantity or expression by itself three times.

- To multiply a number or a quantity by itself three times. In 2^3 , 2 is multiplied by itself three times. x^3 ...means x multiplied by itself three times.
- cube root of a number is the number, when multiplied by itself three times, equals the given number. When a number is multiplied by itself three times, it is cubed. Cube Root. Number that you can multiply by itself three times to get a given number. The cube of a number n is this number multiplied three times by itself. Cube Root. Number that can be multiplied by itself three times to get a given number. multiplied by itself three times. Cube Root. A number
 - that must be multiplied times itself three times to equal a given number.

Definitions of a³

the product of a number multiplied by itself twice. - the cube of a number is the larger number that is the result of multiplying the number by itself twice. the result of multiplying a number by itself twice. - to determine the result of multiplying by itself twice. - When a number is multiplied by itself two times, we get the cube of the number. - In the expression 5³, the 3 is the exponent and indicates that 5 is multiplied by itself twice. - ... a cube is the product of a number multiplied by itself twice. - If you cube a number, you multiply it twice by itself. - The product of a number multiplied by itself twice. Cube: to multiply a number or quantity by itself twice. - A number that is equal to another number multiplied by itself twice.

INCONSISTENT a³ ARITHMETIC FROM WIKIPEDIA

- The cube of a number n is this number multiplied three times by itself.
 to determine the result of multiplying by itself twice

Wiktionary http://simple.wiktionary.org/wiki/cube D'oh! Wiktionary https://en.wiktionary.org/wiki/cube

INCONSISTENT a^3 ARITHMETIC FROM WIKIPEDIA & DUMMIES BOOKS

- Cube Root. Number that can be multiplied by itself three times to get a given number
- the cube root of 8 is 2 because 2 multiplied by itself **two times** is 8.

Technical Math For Dummies D'oh! Pre-Calculus Workbook For Dummies.

https://podometic.in/wp-content/uploads/2021/09/cube-confusion.pdf

WHY FIX BRITISH ARITHMETIC?

My Research into its Evolution Reveals it to be

INCONSISTENT

INCOMPLETE

INFERIOR

INCOMPLETE ARITHMETIC

ARITHMETIC (BRITISH MATHS)

Testing the teaching of $+ - \times \div$ with ± 12 and ± 4

Do British origin school maths lessons pass the	⁺ 12 & ⁺ 4	⁺ 12 & ⁻ 4	⁻ 12 & ⁺ 4	⁻ 12 & ⁻ 4
common-sense test? NO	pos & pos	pos & neg	neg & pos	neg & neg
Addition +	⁺ 12 + ⁺ 4	+12 + -4	⁻ 12 + ⁺ 4	⁻ 12 + ⁻ 4
Subtraction –	⁺ 12 - ⁺ 4	⁺ 12 - ⁻ 4	⁻ 12 - ⁺ 4	⁻ 12 - ⁻ 4
Multiplication ×	⁺ 12 × ⁺ 4	+12 × -4	⁻ 12 × ⁺ 4	⁻ 12 × ⁻ 4
Division ÷	⁺ 12 ÷ ⁺ 4	+12 ÷ -4	⁻ 12 ÷ ⁺ 4	⁻ 12 ÷ ⁻ 4
Arithmetic fails as it wasn't built from zero		PASS	FAIL	Absent

ARITHMETIC (BRITISH MATHS)

Testing the teaching of $+ - \times \div$ with ± 12 and ± 4

Do British origin school maths lessons pass the common-sense test? NO	⁺ 12 & ⁺ 4 pos & pos	⁺ 12 & ⁻4 pos & neg	-12 & +4 neg & pos	-12 & -4 neg & neg
Addition +	⁺ 12 + ⁺ 4	+12 + -4	⁻ 12 + ⁺ 4	⁻ 12 + ⁻ 4
Subtraction –	⁺ 12 - ⁺ 4	⁺ 12 - ⁻ 4	⁻ 12 - ⁺ 4	⁻ 12 - ⁻ 4
Multiplication ×	⁺ 12 × ⁺ 4	+12 × -4	$^{-}12 \times {}^{+}4$	⁻ 12 × ⁻ 4
Division ÷	⁺ 12 ÷ ⁺ 4	⁺ 12 ÷ ⁻ 4	⁻ 12 ÷ ⁺ 4	⁻ 12 ÷ ⁻ 4
Arithmetic fails as it wasn't built from zero		PASS	FAIL	Absent

WHY IS DIVISION SUCH AS

+12 ÷ -4 UNEXPLAINED?

The Quotative (Repeated Subtraction) Model Fails

WHY IS DIVISION SUCH AS

+12 ÷ -4 UNEXPLAINED?

The Quotative (Repeated Subtraction) Model Fails $^{+}12 - ^{-}4 - ^{-}4 - ^{-}4 = ^{+}24$

WHY IS DIVISION SUCH AS

+12 ÷ -4 UNEXPLAINED?

The Quotative (Repeated Subtraction) Model Fails $^{+}12 - ^{-}4 - ^{-}4 - ^{-}4 = ^{+}24$ You will never get to Zero

WHY IS DIVISION SUCH AS

+12 ÷ -4 UNEXPLAINED?

The Quotative (Repeated Subtraction) Model Fails $^{+}12 - ^{-}4 - ^{-}4 - ^{-}4 = ^{+}24$ You will never get to Zero

The Partitive (Equal Groups) Model Fails

WHY IS DIVISION SUCH AS

+12 ÷ -4 UNEXPLAINED?

The Quotative (Repeated Subtraction) Model Fails $^{+}12 - ^{-}4 - ^{-}4 - ^{-}4 = ^{+}24$ You will never get to Zero

The Partitive (Equal Groups) Model Fails

You can't split +12 into negative four equal groups

WHY IS DIVISION SUCH AS

+12 ÷ -4 UNEXPLAINED?

The Quotative (Repeated Subtraction) Model Fails $^{+}12 - ^{-}4 - ^{-}4 - ^{-}4 = ^{+}24$ You will never get to Zero

The Partitive (Equal Groups) Model Fails

You can't split +12 into negative four equal groups

Dodging division ÷ to discuss abstract sign laws of multiplication × is bad pedagogy

WHY FIX BRITISH ARITHMETIC?

My Research into its Evolution Reveals it to be

INCONSISTENT

INCOMPLETE

INFERIOR

THE MATHEMATICS FUTURE PROOFING BEGAN IN 1983

AAMT eConference www.podometic.in

NCOMPLETE

INFERIOR

18 March 1983

I set out to change the way the Western world teaches maths

INCONSISTENT

INCOMPLETE

INFERIOR

18 March 1983

I set out to change the way the Western world teaches maths Maths? It's all in the mind, says Jonathan

JONATHAN throws away his calculator and uses brain powers to solve

IF you were asked what day it was on July 24, 1706, what would you say? It's all in the mind, he says. After a four second calculation he "I hope to change the way the Western world teaches maths," Jonathon said.

Jonathon will be holding two classes at the Park Orchards Community

"I hope to change the way the Western world teaches maths," Jonathon

"Twe learnt to tap the workings of the days, March 4 and 11 at 1 to 3 pm.
This is Fantastic Maths, where the state of the days of the days, March 4 and 11 at 1 to 3 pm.

Jonathon's interest in brain powers began when he completed a speed reading class.

ing class.

Using his speed reading ability, he read and absorbed numerous books on the imagination and the thing that drives it — the brain.

Eventually Jonathon discovered a revolutionary method of teaching maths to children.

days, March 4 and 11 at 1 to 3 pm.

This is Fantastic Maths, which
Jonathon says can enable you to become a calculating whiz kid by learning how to mentally check the answer

to any sum you do.
These classes will be run on Tuesdays, February 23, March 1 and March 8. Grades five and six at 3.45 to 4.30 pm and grades seven and eight 4.45 to

on July 24, 1706, what would you say?

ern world teaches maths," Jonathon said.

It's all in the mind, he says.

Jonathon will be holding two classes at the Park Orchards Community Centre.

After a four second calculation he came up with the correct day.

"I hope to change the way the West-sern world teaches maths," Jonathon

"I've learnt to tap the workings of the brain."

Jonathon's interest in brain powers began when he completed a speed reading class.

Using his speed reading ability, he read and absorbed numerous books on the imagination and the thing that drives it — the brain.

Eventually Jonathon discovered a revolutionary method of teaching maths to children.

The second course will run on Fridays, March 4 and 11 at 1 to 3 pm.

This is Fantastic Maths, which Jonathon says can enable you to become a calculating whiz kid by learning how to mentally check the answer to any sum you do.

These classes will be run on Tuesdays, February 23, March 1 and March 8. Grades five and six at 3.45 to 4.30 pm and grades seven and eight 4.45 to 5.30 pm.

An example of the detailed research that went into the development of Podometic™ Bharatiya Maths

Examples of some languages reviewed by elementary mathematics historian Jonathan J. Crabtree, Founder of www.podometic.in (Post Vedic Maths)

888	Greek	άριθμὸς άριθμὸν πολυπλασιάζειν λέγεται. ὅτ'αν ὅσαι εἰσιν ἐν αὐτῶι μονάδες τοσαυτάκις συντεθῆι ὁ πολλαπλασιαζόμενος καὶ γένηταί τις	
950	Arabic	يوجد أحد العددين بعدد آحاد العدد الآخر فيكون حصة الواحد من آحاد المضروب هي المضروب فيه بعينه والمجموع هو العدد الحاصل من ضرب العدد	
1482	Latin	Numerous per alium multiplicari dicitur, qui totiens sibi coacervatur, quotiens in multiplicante est unitas.	
1543	Italian	Quel numero se dice esser multiplicato per un'altro, il quale si e assunato tante volte, quante unita e in lo multiplicante.	
1555	German		
		multiplicirt oder meret die zal 7. wann die zal 7. vier mal / in ansehen das ains in 4. viermal begriffen ist / genommen vnd zuesamen bracht wir	
1565	French	Un nombre, se dict multiplier un autre nombre, quand autant d'unitez, qu'il y a en luy, autant de fois se compose le multiplie, & en naist un aut	
1570	English	A number is sayd to multiply a number, when the number multiplyed, is so oftentimes added to itselfe, as there are in the number multiplying	
		and an other number is produced.	
1665	Spanish	Un número se dice multiplicar á otro quando tantas veces estuviere compuesto el que se multiplica, quantas fueren las unidades del multiplica	
		producto fuere algun número.	
1695	Dutch	Een getal segt men een getal te vermeenigvuldigen, als dat soo meenigmaal een saamgeset getal is, dat vermeenigvuldigt word, als 'er eenhede	
		vermeenigvuldigende sijn, en dat 'er eenig getal voortkomt.	
1719	Sanskrit	गुण्याङ्कगुण्काङ्कयोघीतो गुणनफलं क्षेत्रफलं भवति	
1855		Ett tal säges multiplicera ett tal, när det sednare talet tages så många gånger, som enheter finnas i det förra, och ett annat tal (produkten) dera	
		uppkommer	
1857	Chinese	乘數者,數有若干倍,即若干為乘數。面數者,兩數相乘所得,原兩數為其邊。	
1865	Hungarian	Szám számot szorozni mondatik, midon a hány egység van benne, annyiszor rakatik a szorzandó, és igy származik szám.	
1907	Czech	Pravíme, že číslo číslem se násobí, když násobené (násobenec) tolikrát se složí, kolik v druhém jest jednotek, a nějaké vznikne.	
1912	Hebrew	וי במספר אחר הוא המספר הנכפל פעמים אשר מנינם כמנין האחדים אשר במספר השני אשר הוא נמנה בו, כמו שתי פעמים שלש או שתי פעמים עשרה:	
		מספר שטוח וזו צור תו::: והמספר הנקבץ מהכפל הזה יקרא מספר שטוח	
1912	Danish	Et Tal siges at multiplicere et Tal, naar det, som multipliceres, lægges sammen ligesaa mange Gange, som der er Enheder i det første, og et eller	
		frembringes.	
1949	Russian	Говорят, что число умножает число, когда сколько в нем единиц, столько раз составляется умножаемое и что-то возникает.	0

P.1 । अथ धनर्णशून्यानां सङ्कलनम् ।

- 2 धनयार्धनमृणमृणया-
- 3 र्धनर्णयारन्तरं समैक्यं खम्।
- 4 ऋणमैक्यं च धनमृणध-
- 5 नशून्ययोः शुन्ययोः शून्यम् ॥ ३०॥ (३१)
- 6 धनयारैक्यं धनमृत्ययारैक्यमृत्यं भवति । धनर्णयारक्तरमेवैक्यं भव-7 ति । समयोर्धनर्णयारैक्यं खं शून्यं भवति । ऋषशून्ययारैक्यमृत्यं धनशू-8 न्ययारैक्यं धनं शून्ययारैक्यं च शून्यं भवति ।
- 9 अत्रापपत्त्पर्ये मन्मुद्रिता भास्करबीजिटिप्पणी द्रष्टव्या ॥ ३० ॥
- 10 इदानीं व्यवकलनमाह।
- 11 जनमधिकाद्विशोध्यं धनं धनादृणमृणाद्विकमूनात्।
- 12 ब्यस्तं तदन्तरं स्याद्दणं धनं धनमृणं भवति॥३१॥(३२)
- 13 शुन्यविहीनमृणमृणं धनं धनं भवति शून्यमाकाशम्।
- 14 शोध्यं यदा धनमृणादणं धनाद्वा तदा चेप्यम् ॥३२॥(३३)
- 15 अधिकाद्धनादूनं धनं विशोध्यं शेषं धनं भवति । अधिकादृणादू-16 नमृणं विशोध्यं शेषमृणं भवति । जनाद्धनादिधिकं धनं वे।नादृणादिधक-
- 17 मृगं विशोध्यं तदा तदन्तरं व्यस्तं विपरीतं स्यास् । अर्थादधिकं धनं वि-
- 18 शाध्यं तदा शेषमृणं भवति । अधिकमृणं विशोध्यं तदा शेवं धनं भव-
- 19 ति । कयं विपरीतं भवतीत्याह । ऋणं धनं भवति धनं चणे भवतीति।
- 20 चेद्रणं शुन्यविहीनं शुन्येन विहीनं तदा ऋणं धनं च शून्यविहीनं धनं शून्यं
- 21 च शून्यविहीनमाकाशं शून्यं भवति । यदि ऋणाडुनं शोध्यं वा धनादृषं
- 22 शाध्यं तहा त्रेष्यमयात् तदा तयार्याग एवान्तरं भवतीति ।
 - अत्रीपपत्यर्थे मन्मुद्रिता भास्करबीजिंडप्पणी विशेष्या॥ ३१-३२॥

All Rights Reserved www.jonathancrabtree.com | DOWNLOAD www.podometic.in/aamt-talk | PLEASE SHARE Crabtree 2021

इदानीं ग्याने करणसूत्रम् । 25 ऋणमृणधनयाचाता धनमृणयार्धनवधा धनं भवति । 26 शून्यर्थयोः खधनयोः खशून्ययोवी वधः शून्यम्॥ ३३॥(३४) चणधनयोघात चर्ण भवति । चणयोवंधा धनवधा धनयोवंधाच 28 धनं भवति । शून्यर्णयोः खधनयोः शून्यधनये।वा खशून्ययोश्च वधः शून्यं 29 ਮਰਜਿ ॥ 33 u ददानीं भागहारे करणसूत्रं वृत्तद्वयम् । 31 धनभक्तं धनमृण्हतमृणं धनं भवति खं खभक्तं खम्। 32 भक्तमृणेन धनमृणं धनेन हतमृणमृणं भवति॥३४॥(३५) 33 खेाड्तमृणं धनं या तच्छेदं खमृण्धनविभक्तं वा। 34 ऋषधनयोर्वर्गः स्वं खं खस्य पदं कृतिर्यत् तत्॥ ३५॥(३६) धनं धनभक्तं वा ऋषं ऋषभक्तं फर्न धनं भवति। खभक्तं खं 36 फर्न खं भवति । ऋणेन धनं भक्तं फलमृयं स्यात् । धनेन ऋणं हूतं फल-37 मृणं भवति । ऋणं वा धनं खेने। हुतं तच्छेदं तस्य शून्यस्य छेदे। यस्मि-38 वृषो वा धने तच्छेदं भवति । एवं खं शून्यमृषाधनविभक्तं (शून्यं) वा त-39 च्छेदं भवति । फर्न शून्यं भवति वा शून्यं तद्वरं स्वादित्यर्थः । ऋषधनः 40 यार्वेगेः स्वं भवति । खस्य वर्गः सं भवति । तदेव वर्गस्य पदं भवति 41 यत्कृतिः स एव वर्गा भवेदिति । भास्करबीजेऽप्येतदेव सर्वम् । अत्र 42 स्वभक्तं समर्थात् 🗧 इदं सर्वदा शून्यसमं नेत्येतदचे चलनकलनं विला-ददानीं सङ्क्षमणविषमक्रमाह । 45 योगोऽन्तरयुतहीना बिह्नतः सङ्गमषमन्तरविभक्तं वा। वर्गान्तरमन्तरयुतहीनं बिहृतं विषमकर्म ॥ ३६॥(३७) योगी राश्यायांगाऽन्तरेख राश्यन्तरेख युता हीनश्च द्विहता दति-48 तो राशी स्तः । ददं सङ्कमणं नाम गणितम् । वा राश्येविंगान्तरं राश्य-49 न्तरेश विभक्तं फलमन्तरेश युतं हीनं द्विहृतं च राशी स्तः। इदं विष- **ARITHMOI**

Pythagoras/Plato/Aristotle/Euclid/Nicomachus

Philosophy, Abstract Geometry, No. Theory

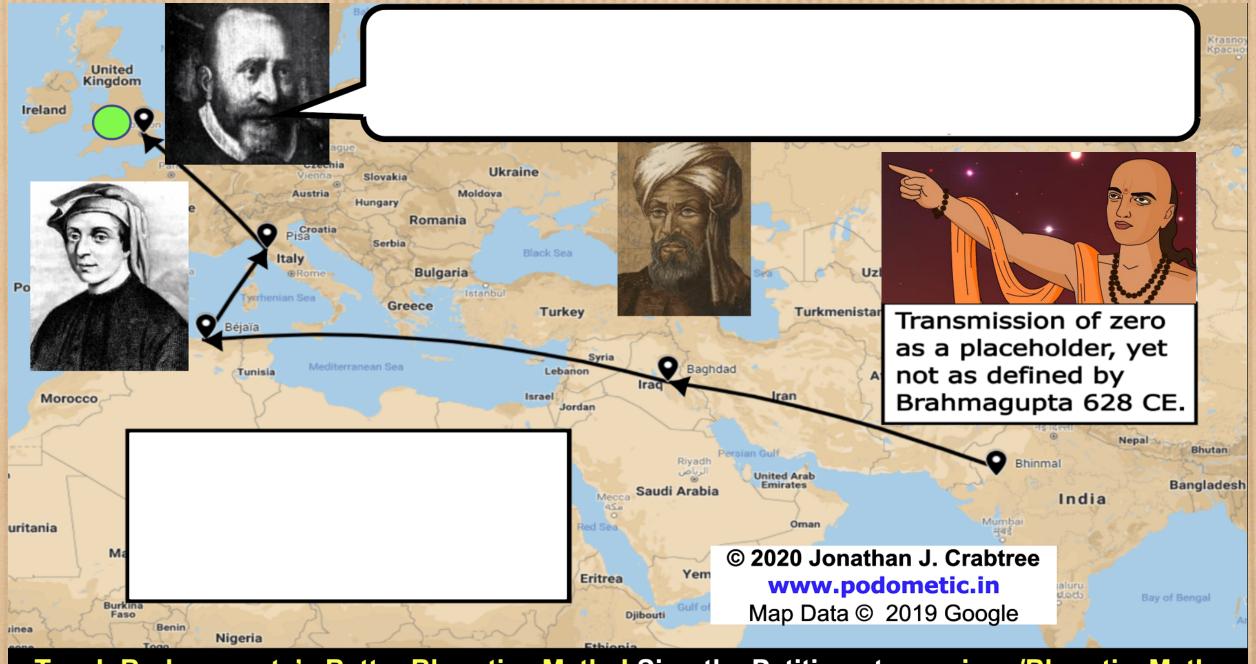
ARITHMETIC

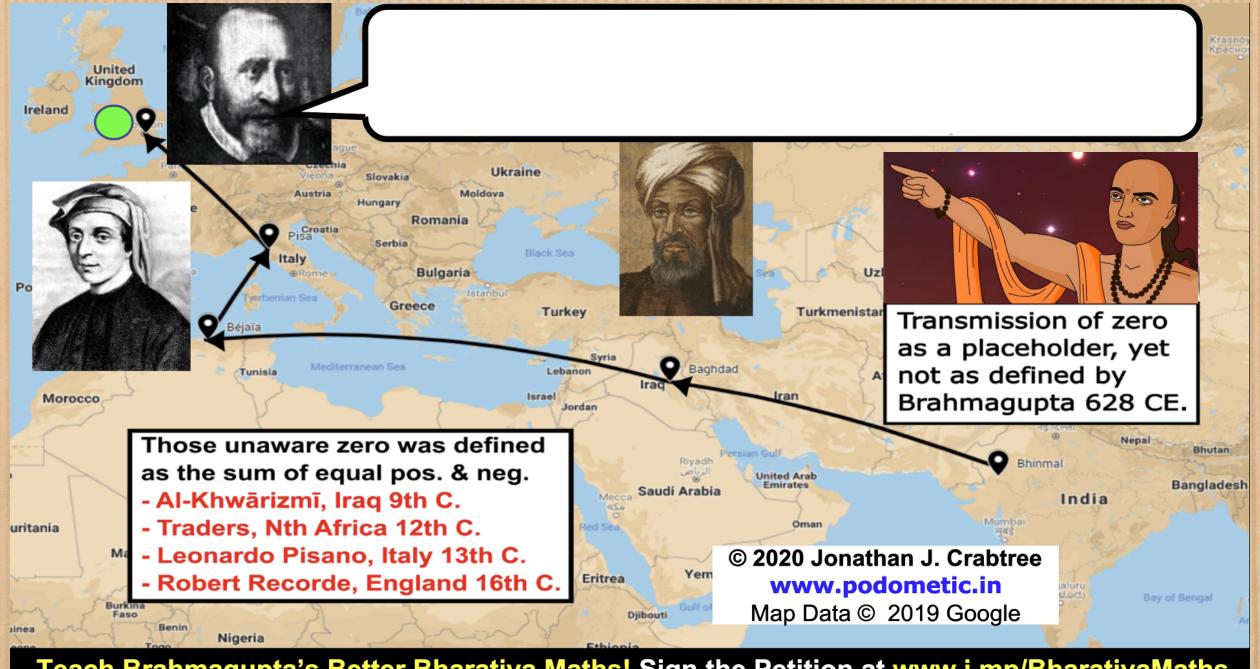
ARITHMOS

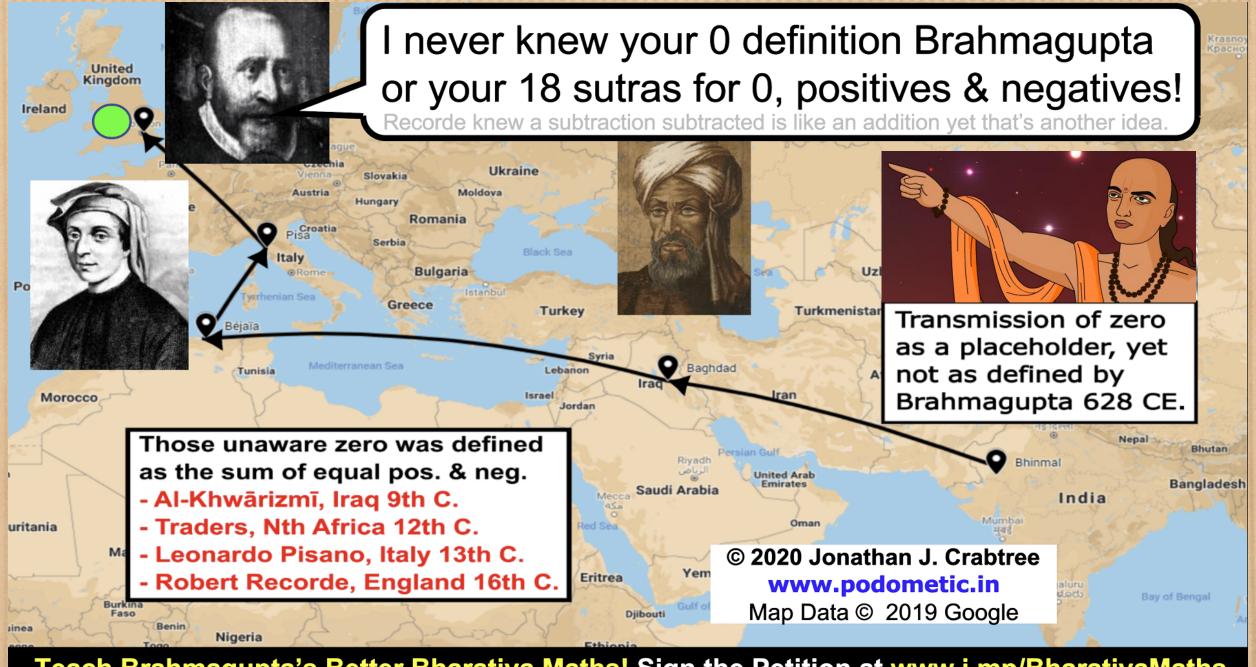
ARITHMOI

Pythagoras/Plato/Aristotle/Euclid/Nicomachus

Philosophy, Abstract Geometry, No. Theory

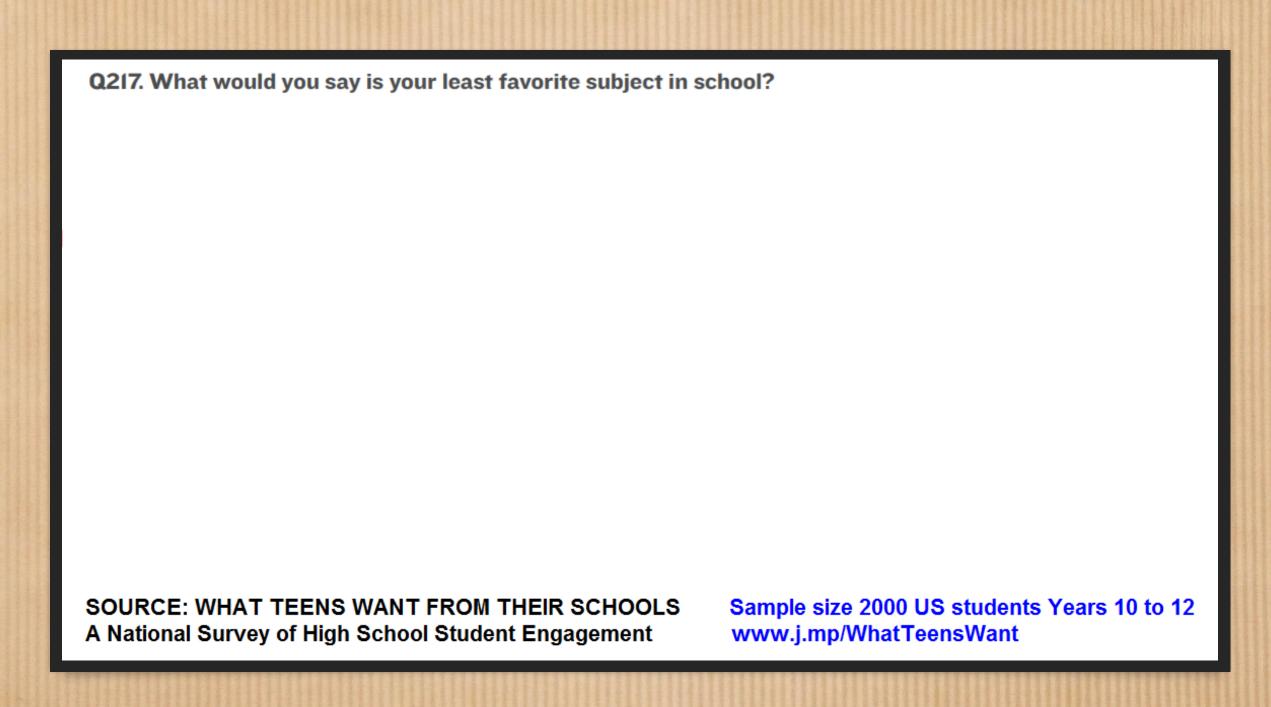



aştronocy, practical geocetry ARITHMOS Baudhāyana/Aryabhaṭa/Bhāskara/Brahmagupta

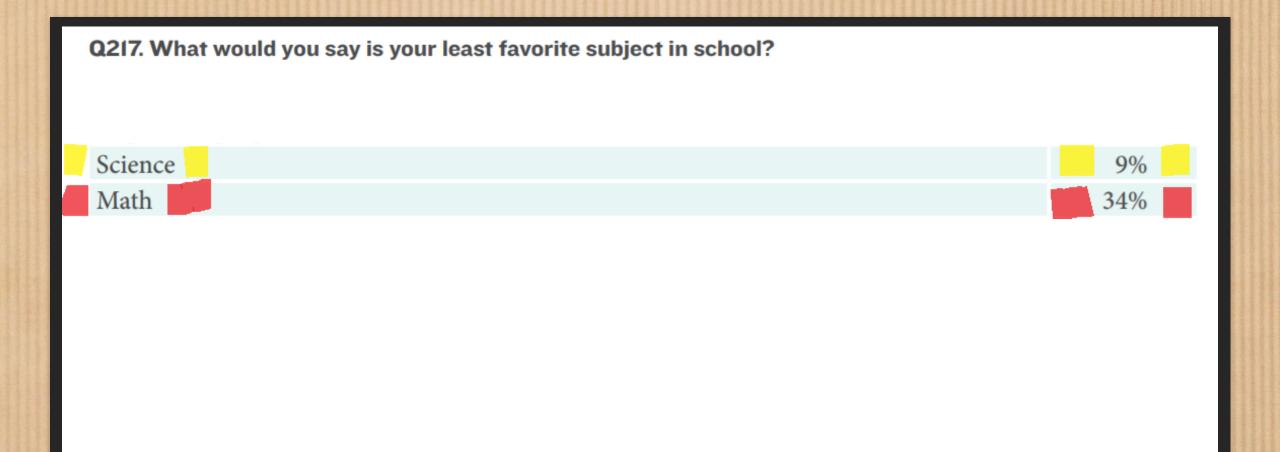


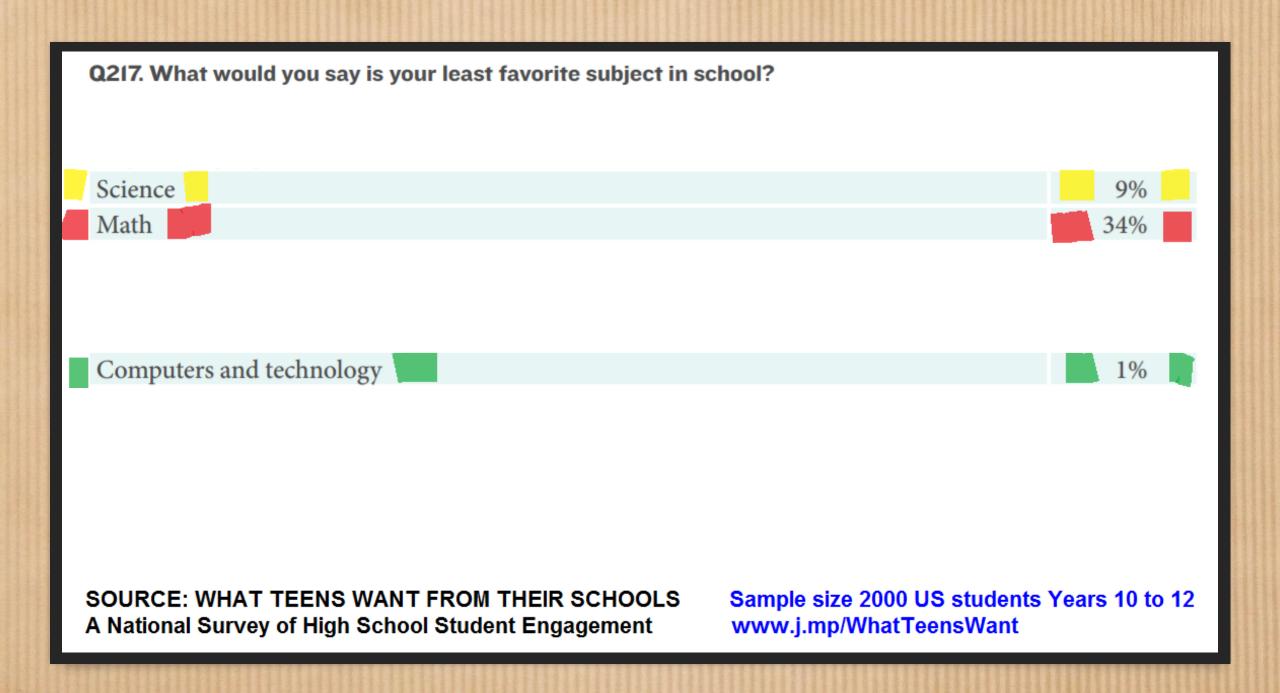
WHY FIX BRITISH ARITHMETIC?

My Research into its Evolution Reveals it to be


INCONSISTENT

INCOMPLETE


INFERIOR



Q217. What would you say is your least favorite subject in school? Math 34% Sample size 2000 US students Years 10 to 12 SOURCE: WHAT TEENS WANT FROM THEIR SCHOOLS A National Survey of High School Student Engagement www.j.mp/WhatTeensWant

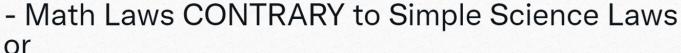
SOURCE: WHAT TEENS WANT FROM THEIR SCHOOLS A National Survey of High School Student Engagement

Sample size 2000 US students Years 10 to 12 www.j.mp/WhatTeensWant

Get Podometic Quick Smart (Better than Arithmetic)

@jcrabtree

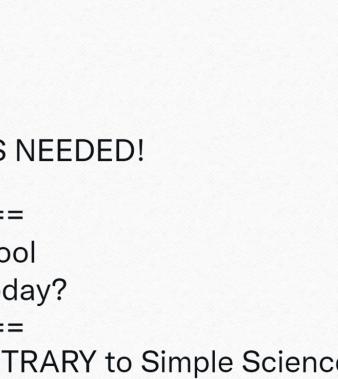
GOT 10 SEC?


U FUN POLL

YOUR OPINION IS NEEDED!

Click to Vote!

What Should School


Kids be Taught Today?

- Math Laws CONSISTENT with Simple Science Laws

Contrary Math & Sci Laws

Consistent Math &Sci Laws

Get Podometic Quick Smart (Better than Arithmetic)

@jcrabtree

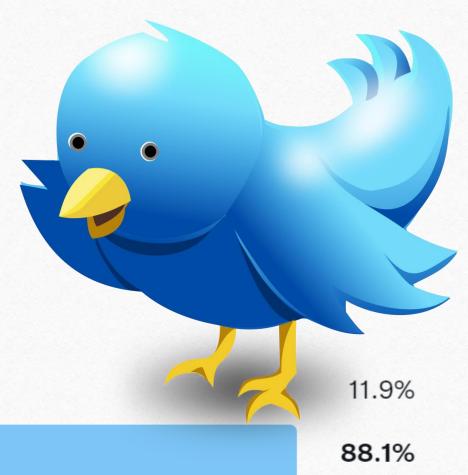
GOT 10 SEC?

U FUN POLL

YOUR OPINION IS NEEDED!

Click to Vote!

What Should School Kids be Taught Today?


Contrary Math & Sci Laws

Consistent Math &Sci Laws

218 votes · Final results

2:47 PM · Sep 9, 2021 · Twitter Web App

INCONSISTENT

INCOMPLETE

INFERIOR

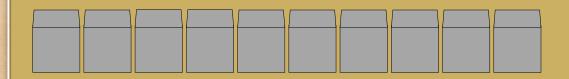
TOP 3 SYSTEM CONSTRAINTS OF BRITISH ARITHMETIC

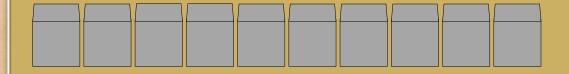
ZERO

BASE TEN

FRACTIONS

THE #1 SYSTEM CONTRAINT

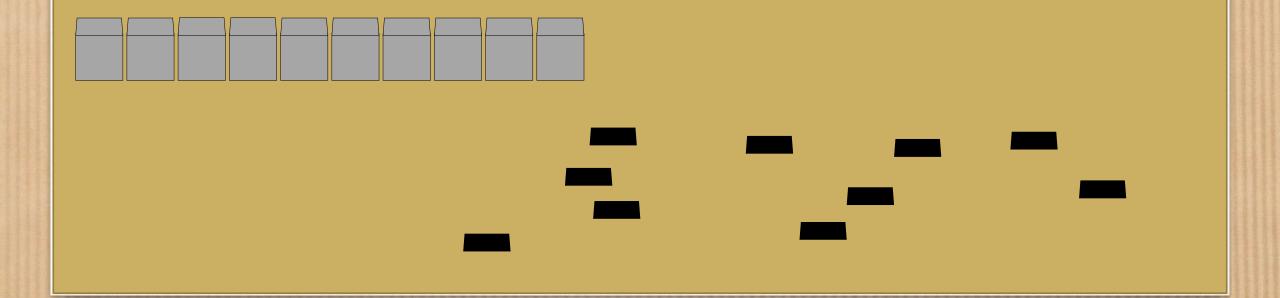

ZERO



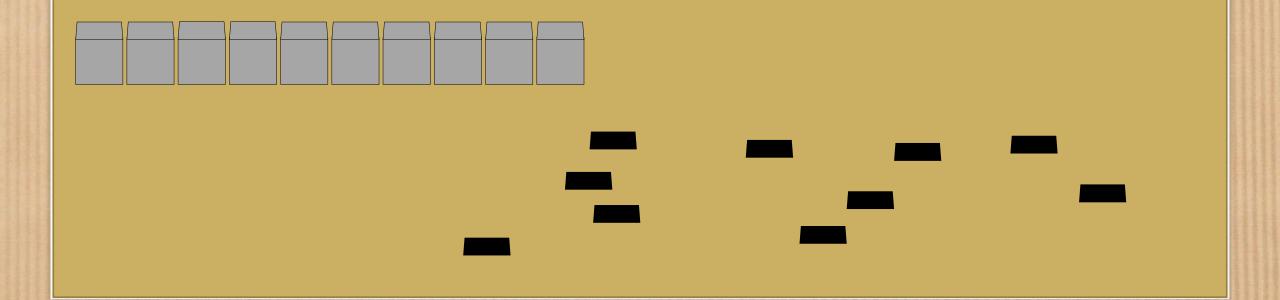
In Our Closed System We Had Zero Bricks on Ocean Level Zero

Then we Added Bricks to Ocean Level Zero

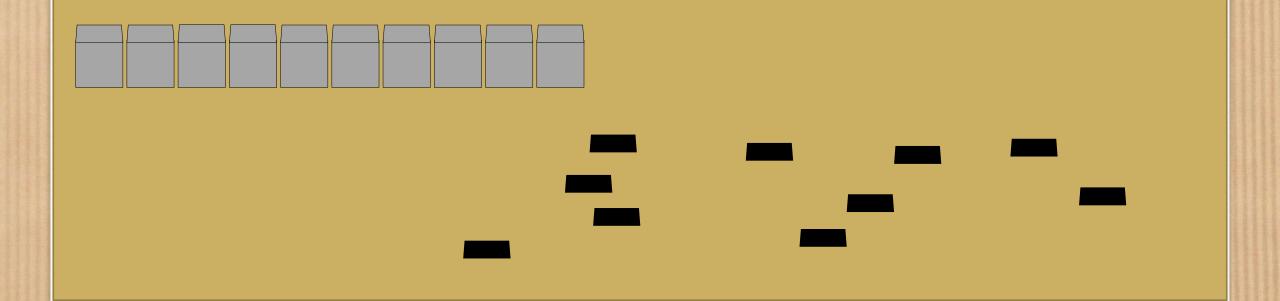
Did the Ocean Rise or Fall?

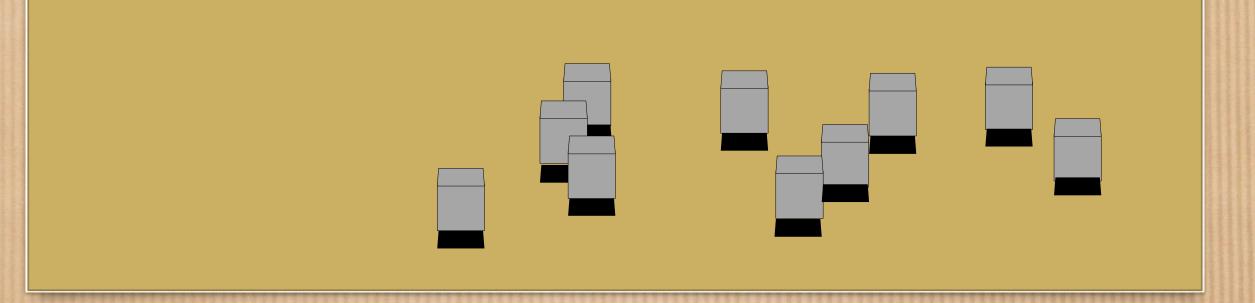


Neither! Why? Because Every Action has an Equal and Opposite Reaction


Neither! Why? Because Every Action has an **Equal and Opposite Reaction**

Neither! Why? Because Every Action has an **Equal and Opposite Reaction**


NEWTON'S THIRD LAW Every Action has an Equal and Opposite Reaction!


IN OUR CLOSED SYSTEM We Follow the Principle of Conservation of Mass!

ZERO HAS BEEN SYMMETRICALLY SPLIT INTO EQUAL & OPPOSITE QUANITITIES

THE EQUAL & OPPOSITE QUANITITIES SUM TO ZERO

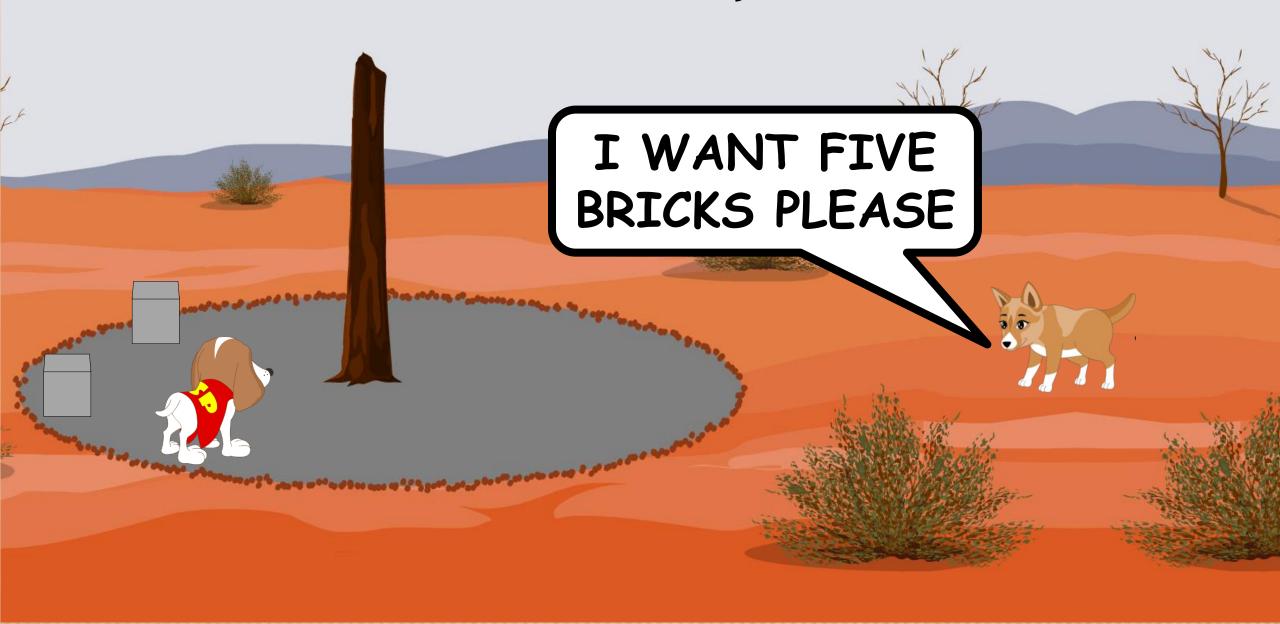
THE EQUAL & OPPOSITE QUANITITIES SUM TO ZERO

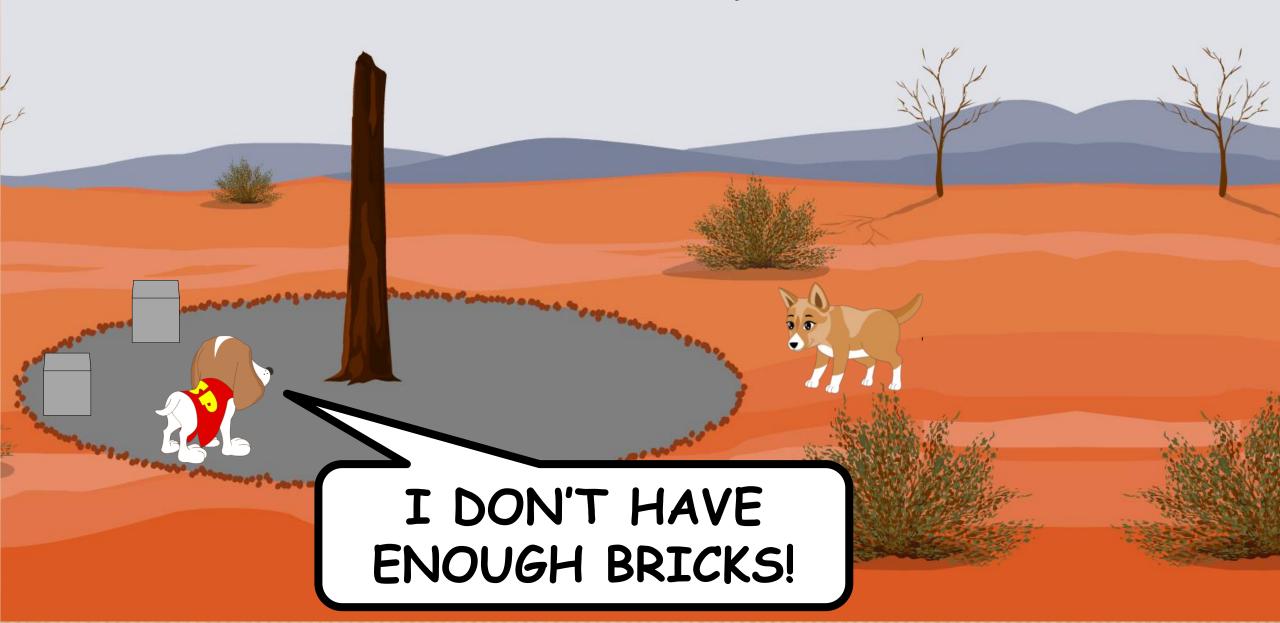
Brahmagupta's 5 Addition Sutras

धनयोधनम्ऋणमृणयोः धनर्णयोरन्तरं समैक्यं खम् ऋणमैक्यं च धनमृणधनशून्ययोः शून्ययोः शून्यम्

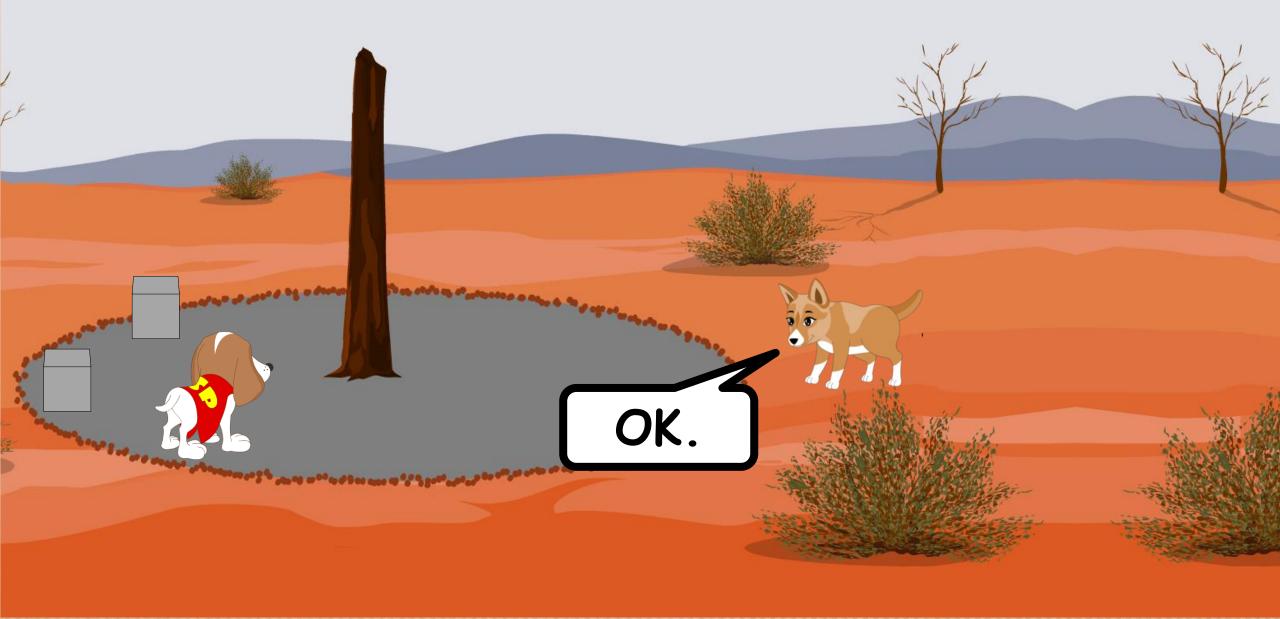
positive plus positive is positive

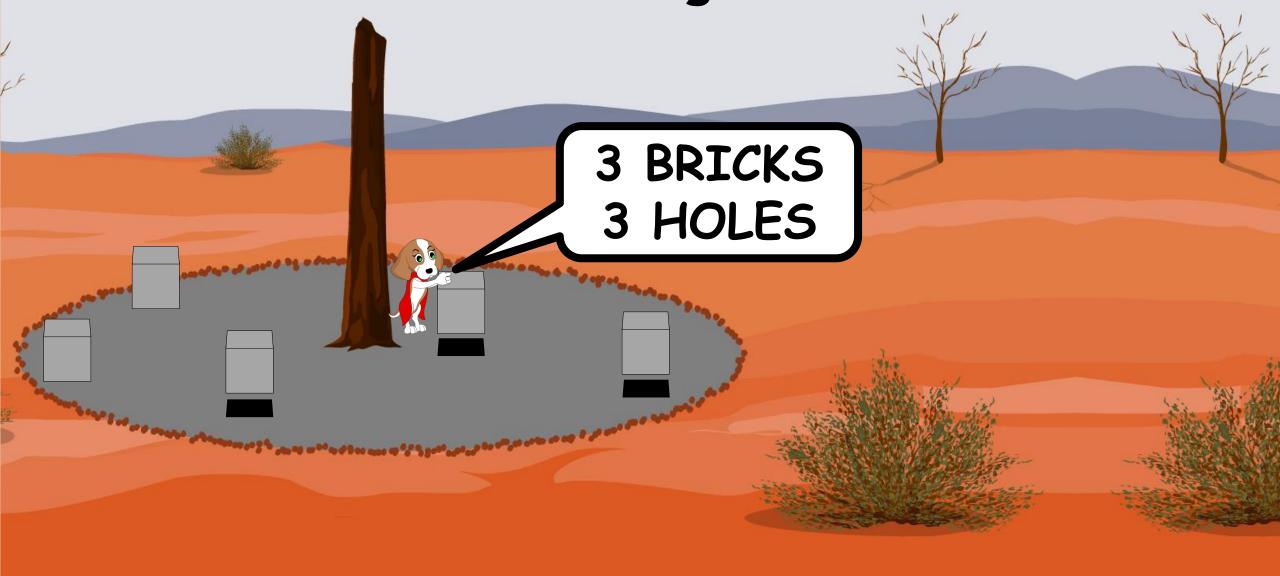

0

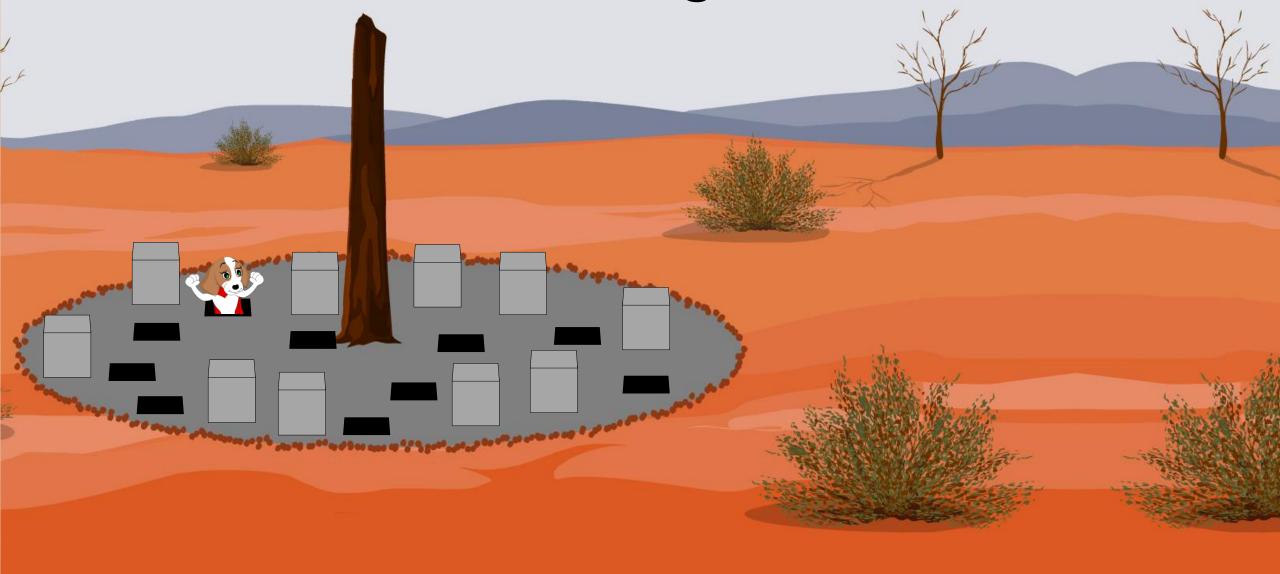

- **AS2** negative plus negative is negative
- positive plus negative is the difference between the positive and negative
- **AS4** when positive and negative are equal the sum is zero

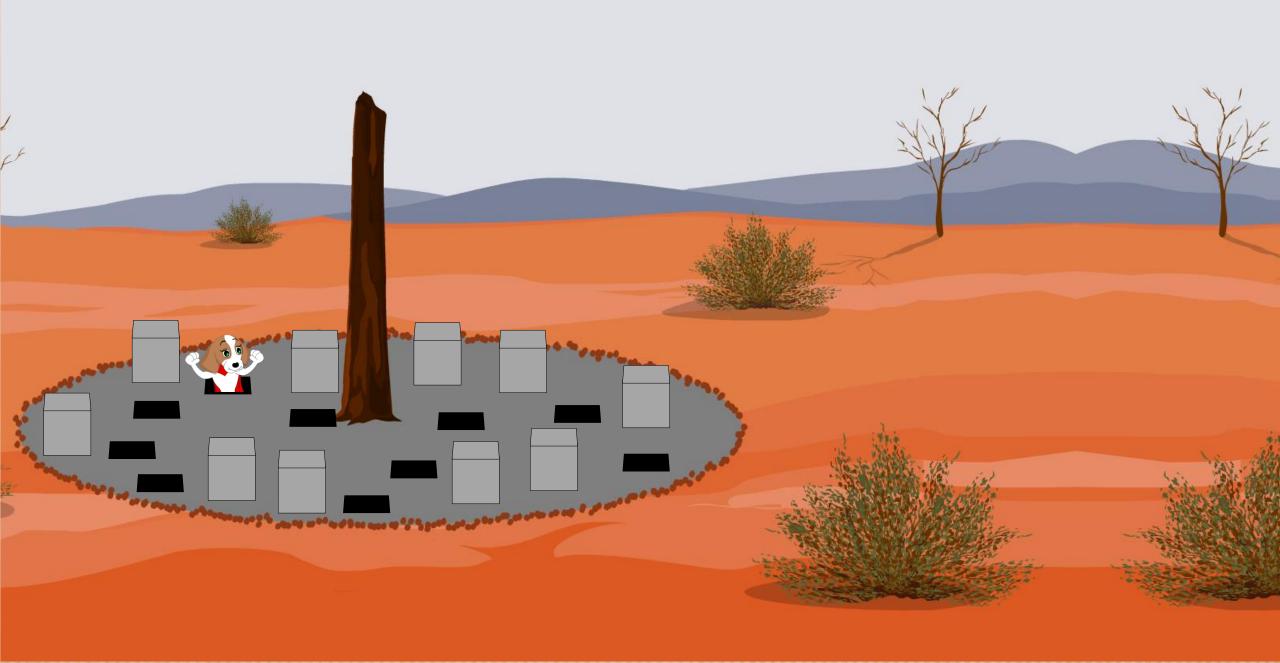

positive plus zero is positive

AS5 negative plus zero is negative zero plus zero is zero


© 2020 Jonathan. J. Crabtree | www.podometic.in | Sign the Petition for Better Bharatiya Maths @ www.j.mp/BharatiyaMaths

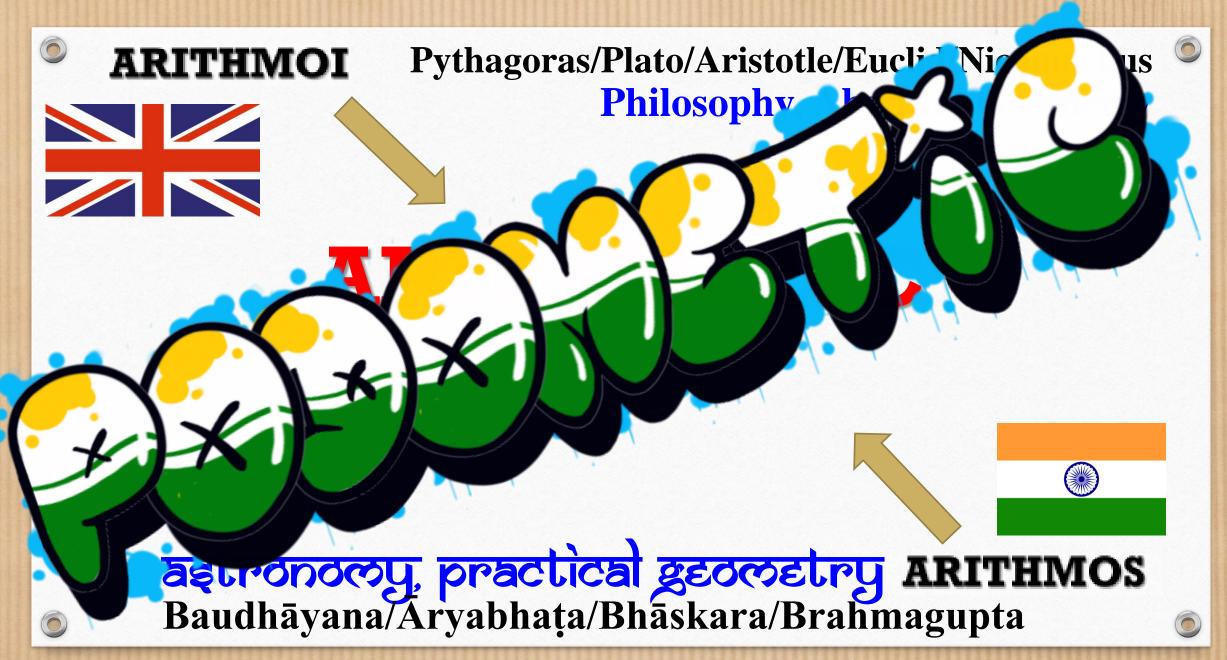



In India Children Play the Happy Harappan Positive Brick and Negative Hole Game!



In India Children Play the Happy Harappan Positive Brick and Negative Hole Game!

In India Children Play the Happy Harappan Positive Brick and Negative Hole Game!


PODOMETIC 2021 - 3020

